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Abstract-Forced convection on a rotating cylinder cooled with an air jet is investigated in the present 
study. To properly handle the jet flow before and after hitting the cylinder, a computational domain having 
an irregular shape is employed. Results of streamlines, isotherms and Nusselt numbers are presented for 
jet Reynolds numbers of Re, = 100, 500 and 1000 under various rotation Reynolds numbers in the range 
of 0 < Re,/Rej < 1. It is interesting to find two solution modes in the present problem. For small rotation 
speeds, the jet flow is separated into two branches upon hitting the cylinder. Each branch has a separation 
point. With the aid of the rotating cylinder, one of the separation Points moves downstream, while the 
other receives little influence. Hence, the overall heat transfer is enhanced. For high rotation speeds, 
however, this heat transfer behavior is reversed due to a layer of dead air round the cylinder. Nevertheless, 
a more uniform heat transfer is achieved. For both cases of Rej = 500 and 1000, dual solutions according 
to each of the two solution modes exist in a range of rotation Reynolds numbers. Like the transition from 
laminar to turbulent ffow, the heat transfer characteristics jump from one solution mode to the other 
depending on the flow instability. However, the transition between the two solution modes is not clear for 

a jet Reynolds number Rej as small as 100. 

INTRODUCTION 

CONVECTIVE heat transfer from a rotating cylinder has 
numerous applications in thermal engineering such as 
cooling of rotating machinery, design of rotating heat 
exchangers, drying of paper, etc. Hence, many theor- 
etical and experimental works have been conducted 
to study this particular problem over the past decades. 
Among the early studies, the experiments [I, 21 
showed that the rotating speed of a horizontal heated 
cylinder had a critical value, below which the heat 
transfer was essentially insensitive to the rotating 
speed. Beyond the critical value, the heat transfer 
increased approximately in the 2/3 power of the 
rotation speed. The existence of the critical rotation 
speed was attributed to the onset of turbulence. How- 
ever, Etemad’s experiment [3] indicated that this was 
due to the development of a three-dimensional secon- 
dary flow. The onset of turbulence would occur at a 
rotation speed much higher than the critical speed. 
Etemad [3] also found that as long as the rotation 
speed was maintained below the critical value, the 
heat transfer coefficient would decrease slightly due 
to the thicker boundary layer around the cylinder 
when the rotation speed increased. Etemad’s findings 
were verified by Farouk and Ball’s experiment and 
numerical simulation [4] some 30 years later. 

The experiment of Kays and Bjorklund [5] is one 
of the earliest studies that investigated heat transfer 
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from a rotating cylinder with cross-flow. The rotation 
Reynolds number Re, in this experiment was in the 
range 2000-45 000. Under such a high rotation Reyn- 
olds number, Kays and Bjorklund found two flow 
regimes depending on the ratio of the rotation Reyn- 
olds number Re, and the free stream Reynolds num- 
ber Re,. When ReJRe, < 2, the boundary layer sep- 
arated in a manner similar to that of the non-rotating 
cylinder. However, when the rotation speed was 
increased such that ReJRe, > 2, there was a layer of 
dead air wound around the cylinder due to the high 
rotation speed of the cylinder. As a result, the flow 
separation disappeared and the heat transfer charac- 
teristic transited from the free stream dominated 
regime to the rotation dominated regime. Similar 
phenomena were observed by Jones et al. [6]. 

It should be noted here that the rotation Reynolds 
numbers employed in the experiments of refs. [5, 61 
were beyond the critical value [l-4]. Hence, in the 
rotation dominated regime (ReJRe, > 2), the heat 
transfer coefficient increased as the rotation speed 
increased. However, this would not be true for a 
rotation speed below the critical value. Recently, Badr 
and Dennis [7] studied this same flow configuration 
numerically. The considered parameters were 
5 & Re, < 100 and 0.1 < ReJRe, < 4. This implied a 
rotation Reynolds number in the range of 
0.5 < Re, < 400, which was below the critical value. 
Their results revealed that the average Nusselt number 
increased when the free stream Reynolds number Re, 
increased, in spite of the rotation speed. When the 
rotation speed increased, however, the average Nus- 
selt number always decreased as in the case of no 
cross-flow [3, 41. The heat transfer characteristic did 
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NOMENCLATURE 

a weighting factors of discretized equations B thermal expansion coefficient of the air 

(31) [K- ‘1 or geometry parameter defined in 

B a general function used in equations (29) equations (14) 

and (32) 1 geometry parameter defined in equations 

D diameter of the cylinder [m] (14) 
E width of the nozzle exit [m] A difference quantity or step size of the grid 

Gr Grashof number, /3 g AT D’/v’ system 

Y gravity, 9.81 m s- * AT temperature difference, T, - T, [K] 

J Jacobian, xE y, - xs yc As stand-off spacing between q = 0 and 

L distance from the nozzle exit to the cylinder II = A? 
surface [m] i dimensionless vorticity, L’, - u1 

Nu, Nu local Nusselt number and average 
a 

curvilinear coordinate 

Nusselt number, see equations (38) and dimensionless temperature, 

(39) (T- T=)/(T,- T,) 
P static pressure [N m ‘1 /I ratio of rotation and jet Reynolds 

P dimensionless pressure, P/(pUf) numbers, Re,,/Re, or wD/(2U,) 

Pe Peclet number, Pr Re, 

: 

kinematic viscosity [m’ s- ‘1 

Pr Prandtl number, v/u curvilinear coordinate 

Re, jet Reynolds number, U, D/v 5* a range of < denoting the location of the 
Re,” rotation Reynolds number, o D2/(2v) nozzle exit 

.?I AslArl 50 location of the nozzle center 

2-3, T, temperatures of the cylinder and the 
ambient air [K] : 

density of the air [kg m ‘1 
a general function used in equation (29) 

U, V dimensionless velocities defined in 4 angle measured from positive X-axis, see 

equations (14) Fig. 1 
u, c dimensionless velocities, V/U, and F/U, stream function, u = ti,, and u = -tir 

u*, v* velocity components in X and Y ;. stream function at the center of nozzle exit. 
directions [m s- ‘1 

w,(Z), V@(Z) weighting functions defined in Superscripts 
equations (33) guessed quantity. 

X, Y coordinate system defined in Fig. 1 [m] 

.x,~~ dimensionless coordinates, X/D and Y/D Subscripts 
Z parameter of the weighting functions. E, N, S, W, P quantity at points E, N, S, W 

and P 
Greek symbols e, n, s, w quantity at the interface points (e, 

a thermal diffusivity of the air [m* s- ‘1 or n, s, w) of control volume P 
geometry parameter defined in X, y, <, q differentiations with respect to x, J’, 5 
equations (14) and ‘1, respectively. 

not transit from the rotation dominated regime to the 
free stream dominated regime even though the value 
of Re,/Re, was well below 2. This phenomenon is 
entirely different from the finding reported by Kays 
and Bjorklund [5] for a case having a rotation Reyn- 
olds number beyond the critical value. 

In many applications, rotating an object is only to 
ensure a uniform cooling (to avoid thermal defor- 
mation) rather than to obtain a higher cooling rate. 
For this purpose, the rotation Reynolds number is 
usually below the critical value. Generally speaking, 
cooling an object by using a jet is more practical than 
using a uniform cross-flow. However, the jet flow 
would reflect when it hits the object. Hence, its cooling 
performance could be quite different from that of a 
uniform cross-flow. The work of Zhang et al. [8] seems 

to be the only publication in the literature that studied 
the cooling of a rotating cylinder with an air jet. 
Unfortunately, Zhang et al. measured only the aver- 

age Nusselt number. No attempt was undertaken to 
study the flow field. In addition, their measurement 
was not sufficiently precise to detect the effect of the 
rotation Reynolds number on the average Nusselt 
number. The purpose of the present study is to inves- 
tigate the flow field and heat transfer numerically for 
a rotating cylinder with an incident air jet. Such a flow 
field has not been studied in the past. 

THEORETICAL ANALYSIS 

Consider a cylinder of diameter D rotating counter- 
clockwise in a quiescent air with an angular rotation 
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FIG. 1. Schematic configuration of the problem and the 
coordinate system. 

speed w. A laminar air jet with a uniform velocity 
U, blows from a two-dimensional nozzle toward the 
center of the rotating cylinder as shown in Fig. 1. Let 
the nozzle width and the distance from the nozzle 
exit to the cylinder surface be denoted by E and L, 
respectively. The surface temperature of the rotating 
cylinder T, is assumed to be uniform as suggested by 
Zhang et al. [8], while both the ambient air and the 
air from the nozzle have the same temperature T,. 
In the present study, the interaction of the air jet and 
the rotating cylinder is emphasized. Hence, the 
temperature difference AT = TO-T, is assumed 

sufficiently small such that the natural convection is 
negligible and all of the thermophysical properties of 

the air are constant. 
In the present study, the computational domain is 

defined by the dashed curve shown in Fig. 1. For 
convenience, the dashed curve will be referred to as 
the ‘outer boundary’. The origin of the coordinate 

system (X, Y) is located at the center of the cylinder, 
while the angle 4 is measured from the positive X- 

axis. Unlike the cross-flow case, the jet might reflect 
after hitting the rotating cylinder. Thus, wake flow is 
not necessary to exist behind the cylinder. For this 
reason, the outer boundary in the region X > 0 is 
defined by a half-circle of diameter 60. To properly 
handle the nozzle, however, a vertical straight line at 
X = - (L + D/2) is employed as a part of the outer 

boundary. 
After introducing the dimensionless transformation 

u = V/U,, v = V*jU,, x = X/D, y = Y/D, 

P = P/W:), Q = CT-- TATo- L) (1) 

the governing equations are expressible as 

^I 

au+!?,0 
ax ay (2) 

subject to the associated boundary conditions 

on the surface of the cylinder 

u= -Isinf$, v=1cos& 19= 1 

at the nozzle exit 

u= 1, v=o, 0=0 

on the outer boundary of the computational domain 
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(3) 

(4) 

(5) 

(6) 

(7) 

au au an au 
x=ay=ax=ay =o, e=o (8) 

where Rej = U,Djv is the Reynolds number of the jet, 
and Pe = Pr Re, is the Peclet number. The symbol 
Iz = wD/(2Uj) = Re,lRej denotes the dimensionless 
moving speed of the cylinder surface. As mentioned 
earlier, the air jet could go across the outer boundary 
after hitting the cylinder. Under such a situation, the 
velocity on the outer boundary is very difficult to 
define. Nevertheless, it is reasonable to assume that 
the reflected jet just goes straight forward when it 
enters a region near the outer boundary. This is the 
major reason for the use of equations (8). In the 
present analysis, the flow is assumed two-dimensional 
and steady-state. Hence, the governing equations can 
be greatly simplified by eliminating the pressure from 
equations (3) and (4). This leads to 

(9) 

u;+vg=&(g+$) (10) 

where [ = au/ax - &jay is the vorticity. The stream 

function $ is defined such that u = a$/ay and 

v = -agjax. 
Next, make a branch-cut along C#I = 0 and generate 

an O-type body-fitted coordinate system (5, ‘I) with a 
uniform step size Al = A4 = 1 by using a Poisson 
grid generation method proposed in ref. [9]. Figure 2 
shows the resulting grid system in the xy-plane, where 
the diameter of the cylinder is unity. Thanks to the 
use of this particular grid generation technique, the 
boundary grids are properly controlled. As observable 
from Fig. 2, small orthogonal grids are generated 
around the cylinder as desired, while those on the 
outer boundary are all orthogonal. Through the co- 
ordinate transformation from the xy-plane to the & 
plane, the physical domain (see Fig. 2) is mapped to 
the rectangular region 0 < 5 < &,,,, and 0 < q < urnax. 
The cylinder surface corresponds to the bottom side 
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On the cylinder surface (r) = 0), the boundary con- 

ditions (6) imply 

ijZ = -_3.(s:cos$+y,sin4) (15) 

$, = -_(J,sin$+x,cos4) (‘6) 

where $ = 4(t) having the boundary values 
b(O) = 271 and 4(&J = 0. From the geometry 

relationship around the cylinder surface (x = COSC$ 
and y = sin b), one obtains 

xc = -sin 4 4: and .v: = cos C$ be. (17) 

This implies tjt = 0 from equation (15), such that the 

stream function $ has a constant value on the cylinder 
surface. In the present study, this constant is assigned 
zero for simplicity, i.e. 

$(5>0) = 0. (18) 

As mentioned earlier, the present body-fitted co- 
ordinates system (Fig. 2) has orthogonal grids around 
the cylinder surface. In addition, the ‘stand-off’ spac- 
ing As between the two curves q = 0 and PI = Aq is 
constant (As = 0.01 in the present study) around the 
cylinder surface [9]. Based on these, equation (16) is 
rewritten as 

ijJ[, 0) = - ;1 S, = constant (19) 

where s,, = (x,‘+y,2)‘~* = As/A?. The vorticity boun- 

dary condition [(<,O) can be obtained from the 
governing equation (1 I) by applying the properties of 
orthogonal boundary grid (fl = 0) and equations (18) 
and ( 19). This, yields 

FIG. 2. The O-type grid system for the computational 
domain. 

of the rectangle (7 = 0 and 0 < 5 Q &,,,,), while the 
outer boundary becomes the top side (q = qmax, 
0 < < < &,,,,). The branch-cut separates the line C$ = 0 

into the two vertical sides 5 = 0 and 5 = l,,,,, of the 
rectangle. 

On the curvilinear coordinate system (<,q), the 
governing equations (9), (10) and (5), respectively, 
are 

a ja* 
--(- --)= -J[ (11) 

dg J a< 

where the parameters I, 11, 7, J, U and V are defined 

by 

CI = x; +v,;, /l = .X:“?+y,.Y,, 

7 = $+,rf, J = x;I’,-x,~~~;, 

u = u1’,, - KY,, = *,,, v = 1’x; - uy, = -I)< (14) 

with the subscripts ‘r’ and ‘y’ standing for partial 
differentiation with respect to 5 and n. It should be 
noted that there are two boundary conditions for the 
stream function, while the vorticity boundary con- 
dition is lacking. Hence, a particular treatment is 
needed to achieve good numerical stability. 

(20) 

On the nozzle exit, equations (7) are expressible as 

it = .l’i (21) 

$, = 0. (22) 

Thus, the boundary condition of the stream function 
across the nozzle exit can be evaluated from 

ti(l*> %%I3 = tio+L’ (23) 

where l* is in a range of t-values corresponding to 

the location of the nozzle. The symbol tiO denotes the 
stream function at the center of the nozzle. Its value 
is not known a priori and will be determined as part of 
the solution. As on the cylinder surface, the vorticity at 
the nozzle exit can be derived from equation (11) with 
the properties of /I = 0 and equations (22) and (23). 
Hence 

(24) 

On the outer boundary, equations (8) imply 
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$( = constant (26) 

II/, = constant. (27) 

It should be noted that equations (26) and (27) pro- 
vide no help in defining the stream function. Further- 
more, they cannot be used simultaneously. Due to 
the lack of further reliable information, the simple 

boundary condition 

is employed. Fortunately, the outer boundary is 
located at the downstream of the jet flow. In addition, 
the temperature gradient near the outer boundary is 
essentially zero. Hence, the use of equation (28) is 
expected not to have a significant influence on the flow 
field and heat transfer in a region near the cylinder. 
Finally. the boundary conditions at 5 = 0 and 
5 = t,,,,, are treated as periodic conditions, because 
they correspond to the same location (the branch-cut 
C$ = 0) in the physical domain. 

SOLUTION METHOD 

The governing equations (11) and (12). along with 
the associated boundary conditions (18), (20), (23) 
(24), (25) and (28) constitute a system of partial 
differential equations. Once this system of equations 
is solved, the velocity is evaluated from the stream 
function $(t,n). With the velocity result, the tem- 
perature S(<,q) can be determined by solving the 
energy equation (13) and the associated boundary 
conditions (6)-(8). 

Note that all of equations (l l)-(13) possess the 
general form 

a NW = 2 ; 4+vG)Wd(Zw) 
0 “W 

USE = 2 s wF*(Z)wWJ 0 se 

B 
aNE= -2 - 0 J w:(Z”)w~(ZC) 

ne 
(31) 

Z, = (AJ/aL, Z, = (AJ/c& 

Z, = (WY),, Z” = WY)” (32) 

where the subscript W denotes quantity at point W 

(the nearest point lies to the west of point P), while 
w stands for the middle point of WP. Points E, S and 
N have similar definitions with E, S and N repre- 
senting east, south and north, respectively. Such a 
notation system has been widely used in the literature. 
It is interesting to note that the weighting function 
scheme was developed from a locally analytical solu- 
tion. This particular scheme produces an exact solu- 
tion for any homogeneous ordinary differential equa- 
tion with constant coefficients. It thus possesses no 
truncation error, although other modes of errors 
could arise when the coefficients are not constant or 
when it is applied on a multidimensional problem. 

In the present study, a quantity at a point other 
than the grid points is estimated by linearly inter- 
polating from the known quantities. For example, let 

(d.% = [(Mw+ (4%1/2 and WWsw = (W)S+ 
(p/J),+ etc. The weighting functions appearing in 
equations (3 1) can be evaluated from 

WJZ) = [O, (l-0.1 lZl)‘] + [O, Zl 

w:(Z) = (2+0.3332Z2+0.0172Z4)-’ (33) 

where [a,61 denotes the greater of a and b. For the 
stream function equation (1 I), the weighting factors 

reduce to 

Applying the weighting function scheme [9, lo] on 
equation (29) for grid point P of a uniform grid system 
(At = An = 1), one obtains the algebraic equation 

a, = 0 5 w@,), aE = 
w 0 

; wd--ze) 
e 

a, = 0 5 wW, aN = 0 5 M--z,) 
s n 

up = -aW-aF--as-UN, aR = -JS 

P a,,= -2 ~ 0 J 4Yzs)w,*(zw) 
SW 

USE = 0 s 14, aNE = - $ /4 
0 

(34) 
se “C 

due to the properties A = B = 0 and thus wr(0) = 1, 

w,*(O) = 0.5. 
It should be noted that on the cylinder surface, 

Ic, = 0 and ti,, = -Is,. Based on a parabolic inter- 
polation curve, the value of JI,,, in the boundary con- 
dition (20) can be updated from 

$,, = 2($+&) (35) 

during the iterations, where & represents the II/(t, An) 
result of the previous iteration. Similarly, the +,, value 
on the nozzle exit (24) can be estimated from 
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J/,, = N-$1) (36) 

where li/, = 0 has been assigned and $, = $(t*, urnaX) 
and 6, = $(t*, q,,:,, -AI?) are obtained from the result 
of the previous iteration. Also, from the boundary 
condition I,%, = 0, the tiO value in equation (23) is 
simply assigned as 

where to denotes the location of the center of the 
nozzle exit. 

Thanks to the orthogonal boundary grids on the 
cylinder surface, the local Nusselt number ~~(~) and 
the average Nusselt number ivu can be simply evalu- 
ated from 

(38) 

(39) 

once the temperature solution is available. 

RESULTS AND DISCUSSION 

Numerical results for stream functions, tem- 
perature distributions and Nusselt numbers were 
obtained for jet Reynolds numbers of Rej = 100, 500 
and 1000, subject to the Prandtl number of 0.7 and 
various rotation Reynolds numbers in the range 
0 < Re,/Rej < 1. The width of the nozzle EjD is 0.3, 
while the distance from the nozzle exit to the cylinder 
surface is L/O = 1.5. Within this distance 
(L/D = 1.5), the increase in the width of the jet Bow 
is not signi~cant before the jet flow hits the rotating 
cyhnder. Hence, the nozzle distance LID has only a 
negligible effect on the results [8]. The grid system 
shown in Fig. 2 seems to be adequate for all of the 
parameters that were investigated in the present study. 

The results of streamlines and isotherms for 
ipe, = 500 under various rotation Reynolds numbers 
are shown in Fig. 3. Figure 3(a) reveals the streamlines 
when the cylinder is stationary (Re,,, = 0). For con- 
venience, the streamlines of the jet flow are rep- 
resented by solid curves, while those of the induced 
flow are denoted by dashed curves. In Fig. 3, 11 solid 
curves are employed for the jet flow such that the 
increment of the stream function is A$ = 0.03 due to 
the particular nozzle width E/D = 0.3 (see equation 
(23)). This renders the stream functions of these II 
streamlines expressible as J/ = ~~~+~A~, where 
i= -5,. . - 1, 0, I, , 5. Such an increment for 
streamlines along with the increment A0 = 0.1 for 
isotherms will be used for all of the streamlines and 
isotherms in the present paper. 

From Fig. 3(a), the jet flow is seen to separate into 
two branches after hitting the cylinder. The upper 
branch eventually heads straight in a direction near 
& = 45”. Due to symmetry, the lower branch flows 
straight near 41 = 315”. Like undisturbed free jets, 
both branches have decreasing velocity and increasing 

(c) R-q,,= 60 

I’ ,-- 

(e) Re,= 90 (f) Rew= 90 

FIG. 3. Streamlines and isotherms for Re, = 500 and various 
rotation Reynolds numbers based on the two-hump mode. 

width along their flow directions. In addition, the 
velocity near the cylinder is very small owing to the 
existence of a boundary layer. This agrees with the 
physicat reasoning. As expected, there is a stagnation 
point on the cylinder surface at # = 180”. However, 
the flow behind the cylinder is essentially quiescent. 
No vortex shedding can be found. Figure 3(b) shows 
the isotherms based on the flow field of Fig. 3(a). 
From Fig. 3(b). it can be seen that the temperature 
gradient is quite large near the stagnation point. On 
the lee side of the cylinder, however. heat conduction 
dominates the heat transfer due to the quiescent air. 
In regions near 4 = 45’ and 315 ‘, the jet flow brings 
the hot air from the cylinder surface to the down- 
stream region. As a result, high tem~rature regions 
develop along each of the jet branches such that sharp 
humps on the isotherms are found there. The humps 
give rise to small temperature gradients and thus 
decrease the Nusselt number. This will be discussed 
later. 

When the rotation Reynolds number Re, increases 
from 0 to 60. the streamlines and the associated iso- 
therms transit from Figs. 3(a) and (b) to Figs. 3(c) 
and (d), respectively. Due to the rotation of the cylin- 
der, the stream function at the center of the nozzle 
exit is no longer zero (eO # 0). Hence, the streamline 
$ = 0 (representing the cylinder surface) does not 
necessarily belong to the family of streamlines with 
the increment A$ = 0.03. From Fig. 3(c), one sees 
that the sixth streamline of the jet flow is wound 
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around the cylinder due to the non-slip condition on 
the surface of the rotating cylinder, while the other 
streamlines are still separated into two branches. Figure 
3(c) indicates also that the upper branch of the jet 
flow is retarded by the rotating cylinder such that the 
separation point slightly moves upstream. In contrast, 
the separation point of the lower branch moves down- 
stream owing to the aid of the rotating cylinder. The 
humps of the isotherms thus move counterclockwise 
as can be seen from Fig. 3(d). Such a characteristic 
does not change when the rotation Reynolds number 
further increases to Re,,, = 90 (see Figs. 3(e) and (f)). 

Generally speaking, the solution of a lower Re, 
makes a good initial guess for the solution of a higher 
Re,. In the present computations, the solution for 
Re,, = 100 (based on Rej = 500) was attempted by 
starting the numerical procedure from the results of 
Re, = 90 (i.e. Figs, 3(e) and (f)) as usual. However, 
the solution convergence was found to be very diffi- 
cult. After numerous iterations, the solution eventu- 
ally converged to the streamlines and isotherms as 
shown in Figs. 4(c) and (d). Figure 4(c) reveals that 
the lower branch of the jet flow winds around the 
cylinder and meets the upper branch again on the top 
of the cylinder. Such a situation diffuses the stream- 
lines of the lower branch. As a result, each isotherm 
in Fig. 4(d) has only a single hump. Their lower humps 
are all gone. This characteristic can also be observed 
in the solutions of higher rotation Reynolds numbers 
such as Re,, = 300 in Figs. 4(e) and (f) and Re, = 500 
in Figs. 4(g) and (h). 

It is interesting to note that dual solutions do exist 
in the present problem in a range of rotation Reynolds 
numbers under the parameter of Rej = 500. To clarify 
this point, the solution procedure for Re, = 90 is per- 
formed once again by using the streamlines and iso- 
therms of Re,,, = 100 (Figs. 4(c) and (d)) as the initial 

guess. The computations seem quite easy to arrive at 
the solution shown in Figs. 4(a) and (b) that possess 
only one-hump isotherms, This implies that the solu- 
tion for Re,, = 90 will either converge to Figs. 3(e) 
and (f) or to Figs. 4(a) and (b), depending on the 
initial guess. For convenience, the two solution modes 
will be referred to as the ‘two-hump mode’ and the 
‘one-hump mode’ in the present paper. 

It should be noted here that the Navier-Stokes 
equation is highly nonlinear, especially when the mag- 
nitude of the nonlinear inertia term is large. Hence, it 
is not surprising to find dual solutions for high Reyn- 
olds numbers. As pointed out by Temam [ll], the 
Navier-Stokes equation has only been proved to pos- 
sess unique solution under the assumptions that the 
viscosity is sufficiently large, or that the given forces 
and boundary values are sufficiently small. It is 
expected that otherwise the solution is not unique. 
This has been proved by Iudovich [ 12, 131, Rabinowitz 
[14], Velte [15] and many others. In fact, dual solu- 
tions for steady fluid flow and heat transfer problems 
have also been found in many experiments [ 16, 171. 
Mathematically, there could be more than two solu- 
tions for a nonlinear problem. However, only two of 
them were detected in the present study. 

Figure 5(a) shows the local Nusselt number Nu($) 
for Re, = 500 subject to the two-hump mode 
(0 < Re, < 90). The Nusselt numbers for Rej = 500 
dealing with the one-hump mode (90 < Re,, < 500) 
are presented in Fig. 5(b). Note that the stagnation 
point is near 4 = 180” for most rotation Reynolds 
numbers that were investigated. The upper branch of 
the jet flow goes from the stagnation point toward 
Cp = 0, while the lower branch flows toward C# = 360”. 
From the Nusselt curves on Fig. 5(a), a maximum at 
4 = 180” and two minimums near C# = 80” and 280” 
are observable for the case of Re, = 0. The maximum 

(a) Reo= SO (b) Rem= SO (c) Rem= 100 (d) Re”= 100 

(e) Re,= 300 (f) Rea= 300 {g) Re,= 500 (h) Re,= 500 

FIG. 4. Streamlines and isotherms for Re, = 500 and various rotation Reynolds numbers based on the one- 
hump mode. 
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FIG. 5. (a) Local Nusselt number for Re, = SO0 based on the two-hump mode. (b) Local Nusselt number 
for Re, = 500 based on the one-hump mode. 

(a) Rea= 0 (b) Re,= 0 

(e) Re,= 400 (f) Re,= 400 

(c) Reo= 200 (d) Rew= 200 

(g) Reo= 1000 (h) Reo= 1000 

FIG. 6. Streamlines and isotherms for Re, = 1000 and various rotation Reynolds numbers. 

and the minimums are, respectively, caused by the 
stagnation point and the humps on the isotherms, as 
shown in Fig. 3. As mentioned earlier, the stagnation 
point and the separation points all move counter- 
clockwise, when the rotation speed of the cylinder 
increases. Hence, from Fig. 5(a), one can see that the 
maximum and the minimums of the Nusselt curve all 
move to the right as Re,, increases. Similar phenomena 
can be found in Fig. 5(b) for the one-hump mode 
except for its missing hump on the lower branch. 
Figure 5(b) indicates also that the maximum Nusselt 
number at the ‘stagnation point’ decreases sig- 
nificantly when the rotation Reynolds number 
increases. This is attributed to a layer of dead air 
wound around the cylinder surface due to the non- 
slip condition. Hence, a more uniform heat transfer 
rate can be achieved by rotating the cylinder. 

Figures 6 and 7 show the streamlines, the isotherms 

and the local Nusselt numbers for Rej = 1000 under 
various rotation Reynolds numbers. Similar infor- 

0 90 180 270 220 

4J 

FZG. 7. Local Nusselt number for Rej = 1000 and various 
rotation Reynolds numbers. 
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(a) Rep 0 (b) Reo= 0 (c) Reo= 20 (d) Re,= 20 

(e) Reo= 40 (f) Reu= 40 (g) Rew 100 (h) Re,= 100 

FIG. 8. Streamlines and isotherms for Re, = 100 and various rotation Reynolds numbers. 

mation was provided in Figs. 8 and 9 for Rej = 100. 
These results reveal that the physical phenomena of 
Re, = 100 and Rej = 1000 are essentially the same as 
that of Rej = 500. A jump between the two-hump and 
the one-hump modes is also found in the case of 
Rej = 1000 near Re, = 300. It, however, is not clear 
for a jet Reynolds number Rej as small as 100. 

Finally, the average Nusselt numbers for Rej = 100, 
500 and 1000 are plotted in Fig. 10 with the abscissa 
1 = Re,/Rej. It appears from Fig. 10 that increasing 
the jet Reynolds number (Rej) would significantly 
increase the Nusselt number. As mentioned earlier, 
rotating a cylinder in a quiescent air will always 
decrease the heat transfer as long as the flow does 
not transit to three-dimensional secondary flow [3,4]. 
Thus, for a jet Reynolds number as small as 100, it is 
not surprising to see a monotonically decreasing 
average Nusselt number (Nu) from Fig. 10 for an 

increasing rotation speed. As demonstrated in Figs. 

FIG. 9. Local Nusselt number for Re, = 100 and various 
rotation Reynolds numbers. 

3,4 and 6, there are two solution modes for the cases 
of Rej = 500 and 1000. When the rotation Reynolds 
number is small, the two-hump solution mode 
prevails. Under such a situation, the rotation Reyn- 
olds number does not show great influence on the 
upper branch of the jet flow, while it depresses the 
flow separation on the lower branch. As a result, 
increasing the rotation speed of the cylinder enhances 

the average heat transfer as long as the two-hump 
mode can be maintained. This trend is reversed once 
the solution jumps to the one-hump mode for high 
rotation Reynolds numbers as observable from Fig. 
10. Like the transition from laminar flow to turbulent 
flow, the jump from the two-hump mode to the one- 
hump mode depends on the flow instability. Unfor- 
tunately, the only available experiment [8] dealing 
with rotating cylinder and jet cooling is restricted to 
the parameters 0.02 < E/D < 0.1, 10“ < Gr < lo’, 
10’ < Re, < IO6 and 5000 < Re,,, < 70000 such that 

0.0 0.5 1.0 

h = REW/Rej 

FIG. 10. Average Nusselt number for various rotation speed 
at Rej = 100,500 and 1000. 
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transition between the two solution modes could not 
be properly observed. More experiments are needed 
to verify this interesting physical phenomenon. 

CONCLUSION 

The purpose of the present investigation is to study 
the flow structure and heat transfer on a rotating 
cylinder cooled with an air jet. An irregular com- 
putational domain is employed to properly handle the 

jet flow before and after hitting the cylinder. The 
solutions reveal that there are two solution modes in 
the present problem. For slow rotation speeds, the jet 
flow is separated into two branches after hitting the 
cylinder. Each branch possesses a separation point. 
The rotating cylinder accelerates one of the jet 
branches such that the separation point moves down- 
stream, while the other separation point receives no 
significant influence. As a result, the overall heat trans- 
fer is enhanced. Unlike the case with cross-flow, no 
vortex shedding was found behind the cylinder. The 
other solution mode occurs when a layer of dead 
air is wound around the cylinder at high rotation 
Reynolds number. This situation achieves a more uni- 
form heat transfer rate, although the overall heat 
transfer is depressed. Dual solutions were found in a 
range of rotation Reynolds numbers for both cases of 
Rej = 500 and 1000. This implies that, like transition 
from laminar flow to turbulent flow, the solution 
could jump back and forth between the two solution 
modes depending on the flow instability. However, 
smooth transition between the two solution modes is 
found for a jet Reynolds number as small as 100. 
More experiments are needed to verify this physical 
phenomenon. 
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